ANALISIS REAL.

Primer Cuatrimestre de 2004

PRACTICA 2: FUNCIONES MEDIBLES.

- 1. Sea B la σ -álgebra de Borel de R y $f: \mathbb{R}^p \to \overline{\mathbb{R}}$. Probar:
 - a) Si f es medible entonces $f^{-1}(B)$ es medible para todo $B \in B$.
 - b) Si $\overline{\mathbf{B}} = \{E = B \cup A, B \in \mathbf{B} \ \text{y } A \subseteq \{-\infty, \infty\}\}$ entonces, f es medible si y sólo si $f^{-1}(E)$ es medible para todo $E \in \overline{\mathbf{B}}$.
- 2. Sean $f, g : \mathbb{R}^p \to \overline{\mathbb{R}}$ medibles. Mostrar que los conjuntos $\{f > g\}$ y $\{f = g\}$ son medibles.
- 3. a) Sea $f: \mathbb{R} \to \mathbb{R}$ tal que para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in \mathbb{R} : f(x) = \alpha\}$ es medible. ¿Es f medible?
 - b) Sea $f: \mathbb{R} \to \mathbb{R}$ tal que |f| es medible. ¿Es f medible?
- 4. $f: \mathbb{R} \to \mathbb{R}$. Entonces:
 - a) Si f es monótona, entonces f es medible Borel.
 - b) Si f es derivable sobre R, entonces f' es medible Borel.
- 5. Si $f: \mathbb{R}^p \to \overline{\mathbb{R}}$ es medible, entonces existe $g: \mathbb{R}^p \to \overline{\mathbb{R}}$ medible Borel tal que f=g a.e.
- 6. Sea $f: \mathbb{R}^p \to \overline{\mathbb{R}}$ continua en casi todo punto. Probar que f es medible.
- 7. a) Hallar $f: \mathbb{R} \to \mathbb{R}$ continua a.e., tal que no existe $g: \mathbb{R} \to \mathbb{R}$ continua que verifica: f = g a.e.
 - b) Hallar $f,g:\mathbf{R}\to\mathbf{R}$ tales que g es continua, g=f a.e. y f es discontinua en todo punto.
- 8. Sea I un intervalo de \mathbb{R}^p .

a) Sea $E \subseteq I$ medible. Probar que para cada $\epsilon > 0$ existe $g: I \to \mathbb{R}$ continua tal que

$$|\{x \in I : g(x) \neq \chi_E(x)\}| < \epsilon.$$

b) Sea φ una función simple definida sobre I. Probar que para cada $\epsilon > 0$ existe $g \colon I \to \mathbb{R}$ continua tal que

$$|\{x \in I : q(x) \neq \varphi(x)\}| < \epsilon.$$

c) Sea $f: I \to \overline{\mathbb{R}}$ medible y finita en c.t.p. Probar que dados $\epsilon > 0$ y $\delta > 0$ existe φ simple tal que

$$|\{x \in I : |\varphi(x) - f(x)| \ge \epsilon\}| < \delta.$$

d) Sea f como en (c). Probar que dados $\epsilon > 0$ y $\delta > 0$ existe g continua tal que

$$|\{x \in I : |g(x) - f(x)| \ge \epsilon\}| < \delta.$$

9. Sea E medible y $(f_k)_{k\geq 1}\colon E\to \mathbb{R}$ una sucesión de funciones medibles tal que para todo $x\in E$, existe $M_x\in \mathbb{R}_{>0}$:

$$|f_k(x)| \le M_x$$
 , $\forall k \in \mathbb{N}$.

Probar que si para todo $\alpha > 0$, existe $k_0 = k_0(\alpha) \in \mathbb{N}$:

$$k \ge k_0 \quad \Rightarrow \quad |\{x \in E : |f_k(x)| < \alpha\}| \le \alpha/k,$$

entonces |E|=0.

10. Sea E de medida finita y $(f_k)_{k\geq 1}: E \to \mathbb{R}$ una sucesión de funciones medibles tal que para todo $x \in E$, existe $M_x \in \mathbb{R}_{>0}$:

$$|f_k(x)| \le M_x$$
 , $\forall k \in \mathbb{N}$.

Probar que dado $\epsilon>0,$ existe $F\subseteq E$ cerrado y $M\in\mathbf{R}_{>0}\,$:

$$|E \setminus F| < \epsilon$$
 y $|f_k(x)| \le M$, $\forall k \in \mathbb{N}$, $\forall x \in F$.

- 11. Para cada $n\in {\bf N}$, sea $f_n:[0,\infty)\to {\bf R}$; $f_n(x)=n$ $\chi_{_{[1/n,2/n]}}(x).$ Probar
 - a) $(f_n)_{n>1}$ converge puntualmente,
 - b) para cada $\delta > 0, (f_n)_{n \geq 1}$ converge uniformemente en $[\delta, \infty)$,
 - c) no existe $E \subset [0, \infty)$ tal que |E| = 0 y $(f_n)_{n \geq 1}$ converge uniformemente en E^c .
- 12. a) Sea E de medida finita y sean $(f_n)_{n\geq 1}\colon E\to \overline{\mathbb{R}}$ funciones medibles, finitas en casi todo punto de E y tal que $f_n\to_{n\to\infty} f$ a.e. en E. Probar que existe una sucesión $(E_i)_{i\geq 1}$ de conjuntos medibles de E tal que:
 - 1) $|E \setminus \bigcup_{i=1}^{\infty} E_i| = 0$,
 - 2) para cada $i \geq 1, f_n \xrightarrow[]{}_{n \to \infty} f$ en E_i .
 - b) El mismo resultado vale si $E = \bigcup_{k=1}^{\infty} A_k$ donde A_k es de medida finita para cada $k \in \mathbb{N}$.
- 13. Sean $(f_n)_{n\geq 1}$ y f funciones medibles definidas sobre un conjunto A y finitas en c.t.p.. Sea $(A_n)_{n\geq 1}$ una sucesión de subconjuntos de A medibles, tales que $|A\backslash A_n| \to_{n\to\infty} 0$. Probar que si $\chi_{A_n} f_n \stackrel{m}{\to} f$ entonces $f_n \stackrel{m}{\to} f$.
- 14. Supongamos que $f_k \xrightarrow{m} f$ y $g_k \xrightarrow{m} g$ sobre E. Probar:
 - a) $f_k + g_k \stackrel{m}{\to} f + g$ sobre E.
 - b) Si $|E| < +\infty$, entonces $f_k g_k \xrightarrow{m} fg$ sobre E. Mostrar que la hipótesis $|E| < +\infty$, es necesaria.
 - c) Sea $(f_k/g_k)_{k\geq 1}$ una sucesión de funciones definidas en casi todo punto de E. Si $|E|<+\infty,\ g_k\to g$ sobre E y $g\neq 0$ a.e., entonces $f_k/g_k\stackrel{m}{\to} f/g$.
- 15. Sea $f_1: [0,1] \to [0,1]$ la función de Cantor-Lebesgue y $f: [0,1] \to [0,2]$ definida por: $f(x) = f_1(x) + x$.
 - $a)\ f$ es continua y biyectiva. Además f^{-1} es continua.
 - b) Si C es el Ternario de Cantor, |f(C)| = 1.
 - c) Sea $g = f^{-1}$. Mostrar que existe A medible tal que $g^{-1}(A)$ es no medible.

- d) Mostrar que existe un conjunto medible que no es boreliano.
- e) Hallar $h_1:[a,b]\to R$ medible Borel y $h_2:R\to R$ medible tal que $h_2\circ h_1$ no es medible.
- 16. Si $f: \mathbb{R}^n \to \mathbb{R}$ es s.c.s. (s.c.i., continua) entonces f es medible borel.